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Preface

THE use of composite materials in industry began in the 1940s with 
GFRP (glass fiber reinforced plastics). Since then, the research 

and development of composite materials have gone through significant 
breakthroughs turning the subject of composite materials into a ma-
tured discipline in applied science today. The most compelling reason 
for industrial use of composite materials is to take advantage of their 
anisotropic nature which enables such material properties as strength, 
stiffness and fracture toughness to be tailored to specific directions.

Composites often fail when they are subject to severe environments 
such as high temperatures or cryogenic temperatures even though there 
is no external load applied to the composites. Typically, failure in com-
posites is caused by thermal stresses which are generated at the inter-
face between the reinforcing fibers and the surrounding matrix due to 
the mismatch of the thermal expansion coefficients of the two mate-
rials. The mismatch of thermal expansion coefficients is not the only 
cause for thermal stresses. Thermal stresses are also generated by the 
mismatch of the thermal conductivities and the elastic stiffness if the 
temperature distribution in the composite is non-uniform.

In order to understand how the thermal stress is generated and dis-
tributed in the composites, it is necessary to know the temperature 
distribution in the composite first. It is also important to know the ef-
fective thermal conductivity of the composite when it is viewed as an 
equivalent homogeneous medium that exhibits the same response as 
the composite. While the mechanical behavior of composite materials 
has been investigated for decades, research on the thermal properties of 
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composites is somewhat less explored, which motivated the authors to 
write this book.

One of the authors (SN) has been working on developing analytical 
methods for the mechanical properties of composites using microme-
chanics approaches in which microstructures such as inclusions, de-
fects and dislocations are taken into account that affect the properties 
of heterogeneous materials. The other author (AHS) has been working 
on a wide range of heat transfer research and developed semi-analytical 
methods to accurately predict the temperature distribution in anisotropic 
media for both steady-state and transient state. Therefore it was logical 
that both of us decided to write a book on analytical methods for heat 
transfer in composites where the availability of books on this topic was 
scarce in the composite research community. Steady-state heat transfer 
in composites composed of inclusions (fibers) and a matrix phase of 
both finite and infinite size as well as the thermal stress resulting from 
the temperature distribution were handled by SN and both steady-state 
and transient-state heat transfer for muli-layer composites was handled 
by AHS.

The purpose of this book is to introduce analytical methods that can 
be used to obtain temperature distributions in general heterogeneous 
materials. Although many heat transfer problems in composites are rou-
tinely solved by numerical methods such as the finite element method 
or the finite difference method, analytical solutions are always pre-
ferred to numerical solutions. The readers are expected to have basic 
mathematical background at the undergraduate level of vector calculus, 
linear algebra and differential equations. As many of the formulas are 
lengthy and tedious, it is helpful if the readers have access to computer 
algebra software such as Mathematica and Maple that automates sym-
bolic derivations of many mathematical formulas. For steady-state heat 
conduction, the governing equation for heat conduction is similar to the 
equations for permeability, electrical conductivity, diffusivity, dielectric 
constant, and magnetic permeability. However, the transient behavior 
of heat conduction significantly differs from the properties above which 
is handled in Chapter 4.

The book consists of seven Chapters. Chapter 1 is a general introduc-
tion and review of the heat conduction equations. Exemplar problems 
are solved that represent the basics of analytical methods employed in 
the subsequent Chapters. In Chapter 2, steady-state heat conduction in 
composites reinforced by fibers/particulates is solved from the micro-
mechanics viewpoint. The temperature distribution in a medium that 
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contains a spheroidal inclusion is sought and it is expressed analyti-
cally for an unbounded medium and semi-analytically for a bounded 
medium. A spheroidal inclusion can cover a wide range of fiber shapes 
from a flat-flake to a sphere to a long fiber. Chapter 3 discusses the 
analytical solutions for steady-state heat conduction in laminated mul-
tilayer composites and in heterogeneous materials. In Chapter 4, differ-
ent analytical solutions for transient heat conduction in multilayer and 
laminated composites are emphasized. Chapter 5 presents an overview 
of rapid energy transport in heterogeneous composites under a local 
thermal non-equilibrium condition. Chapter 6 discusses the effective 
thermal conductivity of unbounded composite materials by introduc-
ing critical theoretical models including the upper and lower bounds of 
Hashin and Shtrikman, the Maxwell-Garnett effective medium theory, 
the Mori-Tanaka model and the self-consistent approximation. Chap-
ter 7 discusses thermal stresses caused by a mismatch of the thermal 
expansion coefficients at the interface of the matrix and fibers due to a 
non-uniform temperature distribution in the composites. Although ther-
mal stress analysis is not a subject within heat transfer, it is an important 
topic as the composites often fail due to non-uniform temperature dis-
tributions. The thermal stress analysis is carried out based on the results 
from the preceding Chapters. References are given at the end of each 
Chapter.

We wish to thank Dr. Joseph Eckenrode and Mr. Stephen Spangler at 
DEStech Publications for their encouragement and support throughout 
the period of this book project.

SEIICHI NOMURA
A. HAJI-SHEIKH

Department of Mechanical and Aerospace Engineering
The University of Texas at Arlington
Arlington, Texas
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CHAPTER 1

Basic Equations for Heat Transfer 

1.1.  FOURIER’S LAW 

IN this Chapter, the fundamental equations of heat transfer are de-
rived and well-known exemplar problems are solved. As this book 

is not meant to be a general textbook on heat transfer, the readers are 
referred to one of many outstanding textbooks (e.g. [1]) and only a min-
imum amount of equations to be used in the subsequent Chapters are 
presented. However, the formulations are intended to be applicable to 
anisotropic and heterogeneous materials later that define the composite 
materials. Although a preferred way of describing the mechanical and 
physical properties of anisotropic materials is to use the tensor (index) 
notation, it is not employed in this book except for Chapter 7 to avoid 
unnecessary complexity. More discussion on heat conduction in com-
posites using index notation is found in [2].

The heat conduction equation is derived from Fourier’s law. Fou-
rier’s law is an empirical relationship between the heat flow and tem-
perature gradient. Fourier’s law states that the heat flows when there is a 
temperature difference between two points (Figure 1.1). The amount of 
the flow is proportional to the temperature difference and the direction 
of the flow is also related to the direction of the temperature difference, 
which can be expressed as

q∝∇T

where q is the heat flux (a vector) whose dimension is w/m2, T is the 

(1.1)
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temperature (a scalar) and ∇T (a vector) is the gradient of T. Math-
ematically, Equation (1.1) can be expressed as

q = − ∇K T

where K is a 3 × 3 matrix which is the proportionality factor between 
the heat flux, q, and the temperature gradient, ∇T, and is called thermal 
conductivity with the dimension, w/(m·k). Equation (1.2) is explicitly 
expressed as

q
q
q

k k k
k k k
k k k

x

y

z

xx xy xz

yx yy yz

zx zy zz































= −












∂
∂
∂
∂
∂
∂

























T
x
T
y
T
z

The minus sign in Equation (1.2) comes from the fact that heat flows 
from a point of higher temperature to a point of lower temperature. It 
should be noted that according to Onsager’s principle [3], K is sym-
metrical as

k k k k k kxy yx yz zy zx xz= = =, ,

Hence, the number of independent components for K is 6 in 3-D (4 
in 2-D).

The general definition of composite materials is any medium which 
is heterogeneous. However, in engineering, composite materials are re-

(1.2)

(1.3)

(1.4)

FIGURE 1.1.   Fourier’s law stating that heat flows from a 
point of higher temperature to a point of lower temperature.
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ferred to those materials whose physical and mechanical properties are 
piecewise constant across different phases. If the material is isotropic, 
i.e., the properties are unchanged under rotations and reflections, the 
thermal conductivity, K, is represented by a single component, k, and 
Equation (1.3) is reduced to

q = − ∇k T

or

q
q
q

k

T
x
T
y
T
z

x

y

z





















= −

∂
∂
∂
∂
∂
∂

























When the material is orthotropic, i.e., the material properties are 
symmetrical with respect to the x-y, y-z and z-x planes, the thermal 
conductivity, K, is expressed as a diagonal matrix as

K
k
k
k

x

y

z

=





















0 0
0 0
0 0

Fourier’s Law 

(1.5)

(1.6)

(1.7)

TABLE 1.1.  Thermal Conductivity for Common Materials [4].

Material Thermal Conductivity (W/(m/K)) at 25°C

Air 0.024
Aluminum 205
Boron 27
Carbon 1.7
Cast iron 58
Concrete (lightweight) 0.1–0.3
Copper 401
Epoxy 0.35
Fiberglass 0.04
Glass 1.05
Polyester 0.05
Silicon carbide 15.2
Titanium 22
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In general, as the matrix, K, is symmetrical, it is always possible to 
rotate the coordinate system so that K in Equation (1.3) is reduced to 
Equation (1.7). Table 1.1 lists thermal conductivities for typical materi-
als taken from a freely available website, engineeringtoolbox.com [4].

1.2.  EQUATION OF ENERGY

The heat conduction equation is derived based on the principle of 
energy balance. The first law of thermodynamics states that the rate 
change of energy in the body without motion is caused by the amount of 
heat entering the system and a heat source generated within the system, 
which can be expressed as (see Figure 1.2)

∂
∂

= − ⋅ +∫ ∫ ∫∂t
E dv ds dvg

Ω Ω Ω
( )ρ q n



where ρ is the mass density, E is the internal energy, q is the heat flux, g 
is the internal heat source and n is the normal to the material boundary. 
The symbol Ω is the entire volume and ∂Ω is its boundary. The volume 
element is denoted as dv and the surface element is denoted as ds.

Using the Gauss theorem1, the first term in the right hand side of 
Equation (1.8) can be written from the boundary integral to the volume 
integral as

− = −⋅ ∇ ⋅∫∫∂ q n qds dv
ΩΩ

Therefore, Equation (1.8) becomes

∂
∂

= − +∇ ⋅∫ ∫∫t
E dv g dvdv

Ω ΩΩ
( )ρ q

or
∂
∂

= −∇ ⋅ +
t

E g( )ρ q

(1.9)

(1.10)

(1.8)

1The Gauss theorem is stated as

 
n v v⋅ = ∇ ⋅

Ω∂ ∫∫ ds vd
Ω

where the integral on the left hand side is an integral over the boundary of the body and the integral 
in the right is over the body. The quantity, n, is the normal to the boundary. It is the 2- and 3-D 
versions of the fundamental theorem of calculus that states that integration and differentiation are 
reciprocal each other.

(1.11)
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which is called the equation of energy. If the body is not in motion, it 
follows that E = CpT where Cp is the specific heat. Using Fourier’s law 
of Equation (1.2), Equation (1.11) can be written as

ρC T
t

K T gp
∂
∂

= ∇ ⋅ ∇ +( )

For steady-state heat conduction, Equation (1.12) is reduced to

∇ ⋅ ∇ + =( )K T g 0

If the medium is homogeneous and isotropic, the steady-state heat 
conduction equation is further reduced to the Poisson equation ex-
pressed as

k T g∆ + = 0

where ∆ is the Laplace operator defined as

∆ ≡
∂
∂

+
∂
∂

+
∂
∂

T T
x

T
y

T
z

2

2

2

2

2

2

Equation of Energy 

FIGURE 1.2.  Heat flux, q, entering the body and heat generation, g, inside the body.

(1.12)

(1.13)

(1.14)

(1.15)
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1.3.  EXAMPLES OF TEMPERATURE DISTRIBUTION  
IN HOMOGENEOUS MATERIALS

In this section, three typical problems of heat conduction in homo-
geneous materials are solved analytically. Although these examples are 
not directly related to composite materials, the employed analytical 
method is to be used for composite materials after appropriate modifi-
cations as shown in the subsequent Chapters. These examples are a few 
of the rare cases where the solutions for the temperature distribution can 
be expressed analytically in series form. It is noted that most of the heat 
conduction problems of importance in composites have no analytical 
solutions available.

1.3.1.  Steady-State Temperature Distribution in a Square with a 
Heat Source

In this example, a 2-D square plate is considered in which a heat 
source, g, exists inside with the homogeneous boundary condition as 
shown in Figure 1.3. In steady-state, the heat conduction equation with 
a homogeneous boundary condition becomes a Poisson type differential 
equation as

∂
∂

+
∂
∂

+ =
2

2

2

2
0

T
x

T
y

c Din  

T D= ∂0 on  

where T is the temperature, Ω is the domain, ∂Ω is its boundary and

c g
k

=

is a function of x and y.
As is shown in the subsequent Chapters, one of the powerful analyti-

cal methods that can be used for a variety of boundary value problems 
is the Sturm-Liouville approach [5]. In the Sturm-Liouville system 
corresponding to Equation (1.16), the eigenfunctions, emn, and the ei-
genvalues, λmn, are defined as the solution to the following differential 
equation

(1.16)

(1.17)

(1.18)
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∂
∂

+
∂
∂

+ =
2

2

2

2
0

e
x

e
y

emn mn
mn mnλ

along with the homogeneous boundary condition:

emn = ∂0  on  Ω

Equation (1.19) can be solved as

e m x n ymn = 2sin sinπ π

and

λ πmn m n= +2 2 2( )

The function, emn, is called the eigenfunction and λmn is called the ei-
genvalue for Equation (1.19). Note that emn are orthogonal each other as

e e dxdymn m n mm mn′ ′ ′ ′=∫∫ δ δ
Ω

where δmn is the Kronecker delta that returns 1 when m = n and 0 oth-
erwise and the integral range is over the entire square. A set of eigen-
functions forms the bases for a function that belong to the same linear 

Examples of Temperature Distribution in Homogeneous Materials

FIGURE 1.3.  A square plate having a uniform heat 
source with the homogeneous boundary condition.

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)



BASIC EQUATIONS FOR HEAT TRANSFER 8

space (Hilbert space) as the eigenfunctions. Therefore, the temperature,  
T(x, y), can be expressed as

T x y e x y
m n

mn mnT( , ) ( , )=
= , =

∞

∑
1 1

where Tmn is an unknown coefficient yet to be determined. The function, 
c, in Equation (1.16) can be also expanded by the eigenfunction, emn, as

c x y c e x y
m n

mn mn( , ) ( , )=
= , =

∞

∑
1 1

where the expansion coefficient, cmn, can be expressed as

c c x y e x y dxdymn mn= ∫∫ ( , ) ( , )
Ω

Substitution of Equations. (1.24) and  (1.25) into Equation (1.16) 
yields

m n
mn

m n
mn mnmnT m n e c e

= , =

∞

= , =

∞

∑ ∑+ =
1 1

2 2 2

1 1

π ( )

from which Tm can be obtained as

T c
m n

mn
mn=
+π 2 2 2( )

Therefore, the temperature is expressed as

T x y c
m n

m x n y
m n

mn
( , )

( )
sin sin=

+= , =

∞

∑
1 1

2 2 2

2

π
π π

For example, if the heat source is a unity,

	 c =1

the expansion coefficient for c can be computed as

c
mn

mn

m n

=
− − − −2 1 1 1 1

2

(( ) )(( ) )

π

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)
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Therefore, the temperature is expressed as

T x y
mn m n

m x n y
m n

m n

( )
(( ) )(( ) )

( )
sin sin, =

− − − −
+= , =

∞

∑
1 1

4 2 2

4 1 1 1 1

π
π π

Figure 1.4 shows the profile of T(x, y). The concept of expanding the 
temperature with a linear combination of eigenfunctions will be used in 
the subsequent Chapters.

1.3.2.  Steady-State Temperature Distribution in a Square Plate 
with Non-homogeneous Boundary Condition

The example in Section 1.3.1 is for a square plate having a heat 
source with the homogeneous boundary condition. In this example, a 
similar problem with a non-homogeneous boundary condition having 
no heat source is solved with the boundary condition shown in Figure 
1.5. The boundary condition is the first kind (the Dirichlet type) and 

Examples of Temperature Distribution in Homogeneous Materials

FIGURE 1.4.  Temperature profile, T(x, y), over a square plate. Heat source, g = 1 with 
the homogeneous boundary condition.

(1.31)
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the temperature is prescribed along the four sides. The differential 
equation with the prescribed boundary conditions is expressed as

∂
∂

+
∂
∂

=
2

2

2

2
0

T
x

T
y

D  in  

T y y
T y f y y

T x T x

( , ) ( )

( , ) ( ) ( )

( , ) ( , ) (

0 0 0 1

1 0 1

0 1 0

= < <
= < <

= =

   

   

   00 1< <x )

The boundary condition is homogeneous in the y direction but not in 
the x direction. Therefore, the Sturm-Liouville system is applied in the 
y direction only and Equation (1.32) can be rewritten as

L T T
x

y =
∂
∂

2

2

where

L
y

y ≡ −
∂
∂

2

2

with the boundary conditions that T = 0 along y = 0,1 and T = f (y) 
along x = 1. Because of the homogeneous boundary condition in the 

FIGURE 1.5.  Steady-state temperature in a square without 
heat source but with a non-homogeneous boundary condition.

(1.32)

(1.33)

(1.34)
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y direction, the variable, y, is chosen as the primary variable and x as 
the secondary variable. Thus, the solution to Equation (1.33) is sought 
in a format of

T x y T e y
n

n n( ) ( ), =
=

∞

∑
1

where

e y n yn ( ) sin= 2 π

λ πn n= 2 2

The function, en(y), and λn, are the eigenfunctions and the eigenvalue 
for Lyen = λnen. The expansion coefficient, Tn, is independent of y but 
dependent on x. Equation (1.35) is substituted into Equation (1.33) to 
yield

L T e y
x

T e yy
n

n n
n

n n
=

∞

=

∞

∑ ∑








 =

∂
∂











1

2

2
1

( ) ( )

n
n n n

n

n
nT e y T

x
e y

=

∞

=

∞

∑ ∑= ∂
∂











1 1

2

2
λ ( ) ( )

or

∂
∂

− =
2

2
0

T
x

Tn
n nλ

which is solved as

T A e B en n
x

n
xn n= + −λ λ

Thus, T(x, y) can be expressed as

T x y A e B e e y
n

n
x

n
x

n
n n( ) ( ) ( ), = +

=

∞
−∑

1

λ λ

where An and Bn are integral constants yet to be determined. The bound-
ary condition at x = 0 can be used to yield

Examples of Temperature Distribution in Homogeneous Materials

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)



BASIC EQUATIONS FOR HEAT TRANSFER 12

0
1

= +
=

∞

∑
n

n n nA B e y( ) ( )

implying that Bn = –An, which reduces Equation (1.41) to

T x y A e e e y
n

n
x x

n
n n( ) ( ) ( ), = −

=

∞
−∑

1

λ λ

At x = 1,

f y A e e e y
n

n n
n n( ) ( ) ( )= −

=

∞
−∑

1

λ λ

which implies that

A f e
e e

n
n

n n
=

,

− −

( )

λ λ

Finally, the temperature, T(x, y), is expressed as

T x y f e
e e

e e e y
n

n x x
n

n n

n n( )
( )

( ) ( ), =
,

−
−

=

∞

−
−∑

1
λ λ

λ λ

Figure 1.6 is an example of the profile of T(x, y) when f(y) = 1.

FIGURE 1.6.  Temperature distribution in a square without heat 
source but with a non-homogeneous boundary condition.

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)
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1.3.3.  1-D Transient Heat Conduction

In this example, a classical 1-D transient heat conduction equation is 
solved. The non-dimensionalized heat conduction equation is expressed 
as

∂
∂

=
∂ ,
∂

2

2

T x t T x t
tx

( , ) ( )

or

LT x t T x t
t

( )
( )

, = −
∂ ,
∂

where L is defined as

L
x

≡ −
∂
∂

2

2

The initial and boundary conditions are

•	 Initial condition: T(x, 0) = f (x)   (0 < x < 1)
•	 Boundary condition: T(0, t) = T(1, t) = 0   (t ≥ 0)

For the differential operator, L, its accompanying eigenfunctions and 
eigenvalues defined as

Le e
e e

n n n

n n

=
= =
λ

( ) ( )0 1 0

are expressed as

e xn n= 2 sin λ

λ πn n= 2 2

Therefore, the solution to Equation (1.48) is assumed to be expressed 
as

T x t c t e x
n

n n( , ) ( ) ( )=
=

∞

∑
1

Examples of Temperature Distribution in Homogeneous Materials

(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)
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Substitution of Equation (1.53) into Equation (1.48) yields

L c e
t

c t e x
n

n n
n

n n
=

∞















=

∞

∑ ∑= −
∂
∂1 1

( ) ( )

n
n n n

n

n
nc e c t

t
e x

=

∞

=

∞

∑ ∑= −
∂
∂









1 1

λ
( )

( )

or

∂
∂

= −
c
t

cn
n nλ

which can be solved as

c A en n
tn= −λ

where An is an unknown integral constant that should be determined 
from the initial condition. Combining Equation (1.57) with Equation 
(1.53) yields

T x t A e e x
n

n
t
n

n( ) ( ), =
=

∞
−∑

1

λ

The initial condition of T(x, 0) = f(x) at t = 0 is now substituted into 
Equation (1.58) as

f x A e x
n

n n( ) ( )=
=

∞

∑
1

As Equation (1.59) is the eigenfunction expansion of f (x), its coef-
ficient is

A f e f x e x dxn n n= , = ∫( ) ( ) ( )
0

1

Thus the solution is expressed as

T x t f e e e x
n

n
t
n

n( ) ( ) ( ), = ,
=

∞
−∑

1

λ

(1.54)

(1.55)

(1.56)

(1.57)

(1.58)

(1.59)

(1.60)

(1.61)
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For example, for the following initial condition,

−
∂
∂

= −
∂
∂

2

2
T
x

T
t

u x
u t
= = ,
= =

0 0 1

1 0

at

at

the solution is explicitly expressed as

T x t f e t e x

n x n

n
n n n

n

( ) ( ) exp( ) ( )

( sin )exp(

, = , −

= , −

=

∞

=

∞

∑

∑
1

1

2 21 2

λ

π π tt n x

n
n t n x

n

n

) sin

( ( ) )
exp( )sin

2

2 1 1

1

2 2

π

π
π π=

− −
−

=

∞

∑

where (f, g) is the inner product defined as

( , ) ( ) ( )f g f x g x dx≡ ∫0
1

Figure 1.7 shows how the temperature decays.

Examples of Temperature Distribution in Homogeneous Materials

FIGURE 1.7.  Temperature profile for the 1-D transient heat conduction 
problem at different times.

(1.62)

(1.63)

(1.64)
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Although the solution procedures presented in the previous three ex-
amples are for homogeneous materials, they can be used for heat trans-
fer problems in composite materials in the subsequent chapters with 
some modifications.
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